پهنه‌بندی خطر زمین‌لغزش در حوضۀ آبخیز طالقان با استفاده از روش سیستم‌های هوشمند (روش شبکۀ عصبی مصنوعی مبتنی بر توابع پایه‌ای گوسی و شبکۀ عصبی پرسپترون)

نویسندگان

  • تشنه لب, محمد دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده مهندسی برق
  • شرفی, یوسف دانشگاه آزاد اسلامی تهران، واحد علوم وتحقیقات، گروه کامپیوتر
  • فاطمی عقدا, سید محمود دانشگاه خوارزمی، دانشکده علوم زمین،
چکیده مقاله:

زمین­لغزش­ها هر سال خسارت­های مالی و جانی زیادی به‌بار می­آورند. نقشه­های پهنه‌بندی خطر زمین­لغزش می­توانند به کاهش این خسارت­ها کمک کنند. حوزۀ آبخیز طالقان از جمله­ حوزه­های مستعد زمین­لغزش است که بررسی شده است. در این مقاله به پهنه­بندی خطر زمین­لغزش در این منطقه و در مقیاس 50000/1، و با در نظر داشتن لایه­های اطلاعاتی پراکندگی لغزش­ها، شیب، برای شیب، زمین‌شناسی (لیتولوژی)، فاصله از گسل­ها، فاصله از آبراهه­ها، با روش شبکه­های عصبی مصنوعی مبتنی بر توابع پایه­ای گوسی (RBF) و شبکه‌های عصبی پرسپترون (MLP) می‌پردازیم. کلیات روش RBF تا حدود زیادی مشابه شبکه­های عصبی پرسپترون (MLP) است که تا کنون قابلیت آن مشخص شده­ است و چندین تفاوت ساختاری در مؤلفه­ها بین این دوروش شبکۀ عصبی وجود دارد. از نتایج نهایی مشخص شد که نقشه‌های حاصل از هر دو روش قابل قبول هستند و روش MLP دقت بیش‌تری نسبت به‌روش RBF دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پهنه بندی خطر زمین لغزش در حوضۀ آبخیز طالقان با استفاده از روش سیستم های هوشمند (روش شبکۀ عصبی مصنوعی مبتنی بر توابع پایه ای گوسی و شبکۀ عصبی پرسپترون)

زمین­لغزش­ها هر سال خسارت­های مالی و جانی زیادی به بار می­آورند. نقشه­های پهنه بندی خطر زمین­لغزش می­توانند به کاهش این خسارت­ها کمک کنند. حوزۀ آبخیز طالقان از جمله­ حوزه­های مستعد زمین­لغزش است که بررسی شده است. در این مقاله به پهنه­بندی خطر زمین­لغزش در این منطقه و در مقیاس 50000/1، و با در نظر داشتن لایه­های اطلاعاتی پراکندگی لغزش­ها، شیب، برای شیب، زمین شناسی (لیتولوژی)، فاصله از گسل­ها، فا...

متن کامل

پهنه‌بندی خطر رانش زمین در منطقه طالش با استفاده از سیستم‌های هوشمند (شبکه‌های عصبی مصنوعی پرسپترون)

با توجه به توانایی‌های شبکه‌های عصبی مصنوعی، کاربرد آن‌ها در رشته‌های مختلف مهندسی و علوم زمین گسترش قابل ملاحظه‌ای داشته است. در این مقاله کاربرد شبکه‌های عصبی مصنوعی در زمین شناسی مهندسی و در پیش بینی خطر زمین لغرش‌های منطقه طالش مورد بررسی قرار گرفته است. نتایج بررسی‌ها نشان می‌دهد که مدل تهیه شده براساس پارامترهای ورودی مؤثر در وقوع زمین لغزش قادر خواهد بود اطلاعات ورودی را پردازش و خطر زمی...

متن کامل

طراحی شبکۀ جادۀ جنگلی با استفاده از شبکۀ عصبی مصنوعی و GIS

جاده‌های جنگلی به‌منظور ایجاد دسترسی به جنگل احداث می‌شوند و تأثیر زیربنایی در سازماندهی منطقه دارند. هدف این پژوهش، معرفی راهکاری هوشمند مبتنی بر شبکه‌های عصبی مصنوعی با تلفیق GIS برای طراحی شبکۀ جادۀ جنگلی با در نظر داشتن اصول و معیارهای فنی شبکۀ جادۀ جنگلی است. ابتدا معیارهای مؤثر با استفاده از روش دلفی شناسایی شد و وزن‌دهی آنها با استفاده از روش AHP، انجام گرفت. با تلفیق لایه‌های مختلف و وز...

متن کامل

مدل‌سازی جریان روزانۀ رودخانه با استفاده از برنامه‌ریزی ژنتیک و شبکۀ عصبی (مطالعۀ موردی: حوضۀ آبخیز معرّف امامه)

فرایند بارش- رواناب پیچیده و غیرخطی است و مدل‏سازی آن به دلیل عدم قطعیت‏های زیاد یکی از مهم‏ترین دغدغه‏های پژوهشگران در حیطة مسائل منابع آب به‌شمار می‌رود. از بین روش‏های مورد استفاده، مدل‏های هوشمند در پیش‏بینی چنین فرایندهایی مفید و مؤثرند. بنابراین، به منظور مدل‏سازی جریان رودخانه از روش‏های شبکة عصبی مصنوعی و همچنین برنامه‏ریزی ژنتیک به منزلة روشی صریح‌ـ که جزو الگوریتم‏های تکاملی به‌شمار م...

متن کامل

مقایسۀ توابع یادگیری شبکۀ عصبی در مدل‏سازی رواناب

پیش‏بینی دقیق جریان در رودخانه‏ها یکی از ارکان مهم در مدیریت منابع آب‏های سطحی به‌ویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی‏ها‌ست. در‌حقیقت، حصول روش‏های مناسب و دقیق در پیش‏بینی جریان رودخانه‏ها را می‏توان به‌عنوان یکی از چالش‏های مهم در فرایند مدیریت و مهندسی منابع آب دانست؛ اگر‌چه تحقیقات وسیعی در خصوص کاربرد روش‏های متکی بر شبکه‏های عصبی مصنوعی دقت این روش‏ها بر روش‏های متداول آ...

متن کامل

مدل‏سازی تراز آب زیرزمینی دشت میاندوآب با استفاده از الگوریتم‌های انتخابات، ژنتیک و روش شبکۀ عصبی مصنوعی

پیش‏بینی تغییرات تراز آب زیرزمینی در دوره‏های آتی و امکان برنامه‏ریزی و مدیریت منابع آب برای بهبود شرایط آبخوان در آینده، بسیار مهم است. در پژوهش حاضر، برای اولین بار با استفاده از الگوریتم انتخابات که یک الگوریتم تکرارشونده است و از انتخابات ریاست جمهوری الهام گرفته و با مجموعه‏ای از راه‏ حل‏های شناخته‌شده به عنوان جمعیت کار می‏کند، به پیش‏بینی تراز آب زیرزمینی دشت میاندوآب در استان آذربایجان ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 3

صفحات  3601- 3626

تاریخ انتشار 2017-02

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023